Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii Rupert L. Frank and Barry Simon

نویسنده

  • BARRY SIMON
چکیده

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆+ V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold, in particular, for positive eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Ii

Laptev and Safronov conjectured that any non-positive eigenvalue of a Schrödinger operator −∆ + V in L(R) with complex potential has absolute value at most a constant times ‖V ‖ γ+ν/2 for 0 < γ ≤ ν/2 in dimension ν ≥ 2. We prove this conjecture for radial potentials if 0 < γ < ν/2 and we ‘almost disprove’ it for general potentials if 1/2 < γ < ν/2. In addition, we prove various bounds that hold...

متن کامل

Eigenvalue Bounds for Schrödinger Operators with Complex Potentials. Iii

We discuss the eigenvalues Ej of Schrödinger operators −∆ + V in L(R) with complex potentials V ∈ L, p < ∞. We show that (A) ReEj → ∞ implies ImEj → 0, and (B) ReEj → E ∈ [0,∞) implies (ImEj) ∈ l for some q depending on p. We prove quantitative versions of (A) and (B) in terms of the L-norm of V .

متن کامل

Spectral Inequalities for Schrödinger Operators with Surface Potentials

We prove sharp Lieb-Thirring inequalities for Schrödinger operators with potentials supported on a hyperplane and we show how these estimates are related to LiebThirring inequalities for relativistic Schrödinger operators.

متن کامل

Eigenvalue Bounds in the Gaps of Schrödinger Operators and Jacobi Matrices

We consider C = A+B where A is selfadjoint with a gap (a, b) in its spectrum and B is (relatively) compact. We prove a general result allowing B of indefinite sign and apply it to obtain a (δV ) bound for perturbations of suitable periodic Schrödinger operators and a (not quite) Lieb–Thirring bound for perturbations of algebro-geometric almost periodic Jacobi matrices.

متن کامل

Eigenvalues of Schrödinger Operators with Complex Surface Potentials

We consider Schrödinger operators in R with complex potentials supported on a hyperplane and show that all eigenvalues lie in a disk in the complex plane with radius bounded in terms of the L norm of the potential with d − 1 < p ≤ d. We also prove bounds on sums of powers of eigenvalues. Introduction and main results. Recently there has been great interest in bounds on eigenvalues of Schrödinge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015